
CLIF is a Load Injection Framework
Bruno Dillenseger Emmanuel Cecchet
France Télécom R&D

BP 98
38243 Meylan cedex, France

INRIA
655, avenue de l’Europe

38330 Montbonnot, France
bruno.dillenseger@francetelecom.com emmanuel.cecchet@inrialpes.fr

ABSTRACT
This paper presents the architecture and preliminary
development of Clif, a new project initiated by the
ObjectWeb consortium in the field of benchmarking. Clif
intends to provide a generic platform suitable for load
injection and performance measurement on any
system/protocol, using arbitrary load scenarios/profiles. As
of current status, Clif consists of a distributed Java
framework based on ObjectWeb's Fractal component
model.

Categories and Subject Descriptors
C.4 [Performance of Systems]: design studies, performance
attributes, measurement techniques.

General Terms
Load, Performance, Measurement, Design, Experimentation.

Keywords
Load injection, component, middleware, benchmarking.

1. ObjectWeb's benchmarking activities
ObjectWeb [7] is an international consortium fostering the
development of open-source middleware for cutting-edge
applications, such as Enterprise Application Integration,
e-business, clustering, grid computing, managed services,
etc. The evident necessity for a benchmarking action, and
the wide use of Java resulted in the creation of the Java
Middleware Open Benchmarking (JMOB) [4] meta-project.
One of the initial objective of JMOB was to make available
open-source middleware benchmarks such as RUBiS [2]
and provide support to the community to help users
reproduce the results and improve the benchmarks. JMOB
also became a natural place to share benchmarks and results
on ObjectWeb middleware, and in particular on application
servers (in a first step, the JOnAS J2EE application server
[5]).
JMOB benchmarks are currently used to investigate impact
of hardware configurations on performances, and in
particular of new architectures (e.g. IA64). We are also
working on the evaluation of distributed middleware
executing on cluster architectures. When a single
application server instance may require up to 5 client

machines to reach its peak point, benchmarking a whole
application server cluster becomes a real challenge from the
load injection point of view. In fact, the load injection
application may become more complex than the system to
test.
In such a context, having ad-hoc client emulators for each
and every benchmark is no more viable to evaluate large
scale distributed systems and middleware. A real need for a
generic distributed load injector has arisen from our
benchmarking experience. In the very beginning of year
2003, France Telecom R&D and INRIA initiated the open
source development of CLIF, a Java framework aimed at
generating arbitrary load/traffic on arbitrary systems, via
arbitrary invocation protocols.

2. CLIF: yet another benchmarking tool?
CLIF project started from an overview of existing projects.
Many interesting projects and platforms were found but the
conclusion was that, on the one hand, good commercial
products were outstandingly both efficient and expensive,
and on the other hand, that no open source project was
really fitting both CLIF targets and ObjectWeb's approach
in terms of software architecture.
CLIF functional requirements are the following:
• generic framework featuring hot swappable components

and transparent deployment in a clean, sound
architecture;

• distributed load generation for scalability;
• distributed test management with inexpensive runtime

monitoring capabilities;
• optional user interface (in other words, support for both

batch and interactive tests);
• efficient, powerful analysis tools for postmortem

exploitation of test results, or even for runtime,
automatic feedback on test parameters.

3. CLIF architecture
3.1 Fractal component model
Fractal [1] is a modular and extensible component model
that can be used with various programming languages to
design, implement, deploy and reconfigure various systems
and applications, from operating systems to middleware
platforms and to graphical user interfaces.

The goal of Fractal is to reduce the development,
deployment and maintenance costs of software systems in
general, and of ObjectWeb projects in particular. The
Fractal model already uses some well known design
patterns, such as separation of interface and implementation
and, more generally, separation of concerns, in order to
achieve this goal. There is also an ongoing research work to
get even closer to this goal.
As far as CLIF is concerned, Fractal provides a relevant
support for:
• designing, thanks to its uniformity (generalized single

component structure and management for every service,
whatever functional or technical), its recursion
(components may be compositions of sub-components),
and finally its general-purpose and minimalist approach;

• flexible runtime deployment and management thanks to a
reflection capability on components, compositions and
bindings.

3.2 CLIF, a Fractal-based distributed architecture
CLIF has been designed using the Fractal model, and
implemented using Julia, a Java implementation of Fractal,
and Fractal-RMI, an RMI-based extension for distribution
support.
CLIF's distributed architecture is composed of a single
supervision console component, for test management
(deployment, control, monitoring), and an arbitrary number
of "CLIF server" components (see Figure 1). Those
servers are empty, minimal Fractal components, in which
the console may create a load injector component and/or a
resource probe component. The former component is in
charge of hosting and executing test scenarios, while the
latter measures the consumption of system resources
(related to CPU, memory, swap, network, disk, etc.). CLIF
servers register themselves in a Fractal-RMI registry to be
found and reached by the console.

Figure 1. CLIF architecture: a distributed system of
Fractal components

Resource probes shall be deployed:
• on nodes hosting the tested system, typically to see if

observed throughput saturation or error occurrence is
due to some resource shortage, and then to improve the
system (hardware or software layers);

• as well as on the load injectors, to detect a saturation of
the injection system, which is a typical problem of load
injection tools in most real situations.

4. CLIF implementation
4.1 Main components
Besides console and server components, other main Clif
components are:
• a storage component, which is responsible for storing

test data;
• a collector component responsible for transporting test

data to the storage component;
• an analyzer component supporting exploitation of test

data;
• a number of scenario components, one per load injector,

responsible for actually invoking the tested system
according to their own specific load injection
specification, as well as delivering test data to the
collector component (response times, error occurrences,
results, etc.).

4.2 Focus on scenario component
The scenario components are deployed and controlled by
the console among every Clif server acting as load injector.
As a consequence, a full test is the combination of all
deployed test scenarios. Each scenario may be arbitrarily
complex or simple. The simplest scenarios may consist in
repeatedly invoking a couple of operations on a tested
server with the definition of load level ramps or pikes.
More complex scenarios may simulate groups of users with
one or several behavior types, and even include server-local
or injection system-wide synchronization.
As a framework, Clif is independent from scenarios
implementation and complexity. How they can be defined
and executed is out of Clif's scope, but the services they
offer or require as Fractal components are clearly specified.
On the one hand, a scenario component offers a
management service (specified by a Java interface) to
control its initialization and execution (start, stop, suspend,
resume and join, i.e. wait for the scenario execution end).
On the other hand, the scenario component makes use of
two services: one to give test data to the collector
component, and a second one to inform about the scenario
status (initializing, ready, executing, etc.).

4.3 Test data
Clif collects and stores several kinds of test data:

• events about the life cycle of each scenario and the
overall test (deployed, started, suspended, aborted, etc.);

• alarms with severity levels;
• performance measurements, including the action name,

the injector name, the response time, a success flag, the
iteration number (when applicable), the session identifier

CLIF
supervision

console

FractalRMI
registry

(naming service)

CLIF servers
(load injector

and/or
resource probe) tested system

resource probe

uniquely designating a virtual user (when applicable), a
comment string and a result object;

• resource static information describing every node
running a resource probe: number and type of CPU,
memory size, operating system, network adapter, etc.;

• resource consumption information for every node
running a resource probe: CPU usage, context switches,
page swapping rate, network errors, network packet rate,
network packet collisions, disk transfer rate, etc.

All these data records are locally time-stamped by each
node. The clocks of these nodes are synchronized using the
Network Time Protocol. Implementing distributed causality
between all these data records would be a possible
improvement, but a great care should be taken not to
overload the system. We believe that NTP precision is
sufficient for the kind of data exploitation we are currently
thinking about. A deep correlation analysis would, of
course, require to take into account the possible slight shift
between clocks.
5. Clif project status
A first version of the framework is ready (Clif server,
console), together with a minimal graphical user interface
and a few utilities, such as an HTML parser or a state
transition matrix with think time directly inspired from the
RUBiS benchmark. The resource probe has been
implemented for Linux only, by making use of /proc
information.
No true collection and storage components are ready yet,
but a simple local file based system is available. We are
working on a Message-Oriented Middleware and J2EE
based architecture to asynchronously collect data (to avoid
disturbing and overloading the testing system), and to store
these data in a database, which is probably the best way to
exploit great benchmarking campaigns.
The alarms are not available yet. A preliminary work has
been done in the form of a distributed log system for Fractal
based on the Monolog [6] logging API, but it is still under
development. Then, an integration to Clif console will be
made, so that a response can be automatically made by Clif
when alarms of a given severity or user-defined alarms
occur (e.g. display the alarm message, suspend, abort or
restart the test, etc.)
Future work deals with:
• analysis tools to actually perform and help data

exploitation from the database (report generation, data-
mining techniques, event correlation, feedback on tests
definitions and parameters...);

• scenario components for a variety of load profiles
(ramps, peaks, coarse-grain overall load or fine-grain
user simulation or replay of recorded real user
sessions...);

• user input tools (graphical, scripts...);
• support libraries for typical targets (HTTP/HTTPS,

LDAP, JDBC, FTP, XML-RPC, IP sockets...);
• overall management of full benchmarking campaigns.
6. Conclusion
Clif is a Load Injection Framework, implemented in Java
following the Fractal component model. It is a starting open
source initiative of the ObjectWeb community in the field
of benchmarking. The specific aim of this project is to
define a smart infrastructure open to any target system, any
user skill, and any load profile including high loads. Being
a new project, a preliminary version of the load injection
architecture is ready, but a number of components are
currently lacking to make it actually usable for test
campaigns. Some of them are under development, others
are going to be implemented or designed.

7. Acknowledgment
Thanks go to Julien Buret and Nicolas Droze for their work
on Clif. Thanks go also to other comparable projects,
especially RUBiS and Apache Jmeter [3] from which we
got inspiration and experience – and possibly someday
pieces of code? :-)

Visit Clif at http://clif.forge.objectweb.org/.

8. REFERENCES
[1] E. Bruneton, T. Coupaye, J.-B. Stefani – Recursive and

Dynamic Software Composition with Sharing. Seventh Int.
Workshop on Component-Oriented Programming
(WCOP02), ECOOP 2002, Malaga, Spain.

[2] Emmanuel Cecchet, Julie Marguerite and Willy Zwaenepoel
– Performance and scalability of EJB applications –
Proceedings of OOPSLA’02, November 2002.

[3] Jmeter – http://jakarta.apache.org/jmeter/
[4] JMOB – Java Middleware Open Benchmarking –

http://jmob.objectweb.org.
[5] JOnAS: Java Open Application Server –

http://www.objectweb.org/jonas.
[6] Monolog – http://monolog.objectweb.org.
[7] ObjectWeb consortium. – http://www.objectweb.org.

	ObjectWeb's benchmarking activities
	CLIF: yet another benchmarking tool?
	CLIF architecture
	Fractal component model
	CLIF, a Fractal-based distributed architecture

	CLIF implementation
	Main components
	Focus on scenario component
	Test data

	Clif project status
	Conclusion
	Acknowledgment
	REFERENCES

