

 118th November 2015

Benchmarking Orange Forge with
CLIF

Bruno Dillenseger - Christian Bayle
Orange Labs

At the middle of this year, Orange Labs switched its internal software forge (so-
called Orange Forge) to a completely new hardware infrastructure and a new
version of the Tuleap forge software.

Could this new brand new Orange Forge platform cope with current user workload?
If so, what about users' quality of experience?
This is what we tried to know using OW2's load testing project CLIF.
Feedback says it was a good idea to do so.

 218th November 2015

Orange Forge

➔ A software forge for Orange Labs
● also open to the Orange Group and partners
● 1000+ connected users daily
● 16000+ registered users worldwide
● 5000+ active projects
● trackers are also widely used by Orange Labs support teams
● based on Tuleap Application Lifecycle Management open source

suite (https://tuleap.net/)

➔ Integrates a great variety of services:
● CVS, SVN, GIT, Wikis, trackers, documentation and package

management, agile backlog/cardwall/dashboard/roadmap/, mailing
lists, continuous integration...

 318th November 2015

Upgrading Orange Forge

➔ Towards of completely new platform
 new servers
 new network equipment
 Tuleap and Linux upgrade

➔ Critical questions:
 Will the new platform stand the incoming traffic?
 What about quality of experience?

➔ A necessity: benchmarking!

 418th November 2015

What is benchmarking?

➔ Performance testing
consists in generating
traffic on a system
under test and get a
performance metric

➔ A benchmark specifies
 the system under test

and its interface (API)
 the incoming traffic (mix

of requests on the API)
 a metric of interest

System Under Test

Tester's
console

Load
injectors

Benchmarking enables
comparing the performance
of technical alternatives

 518th November 2015

CLIF: OW2's load testing framework

➔ generic/extensible
IP, VoIP, database, mobile
networks, custom protocols...

➔ flexible
Eclipse, Java Swing, command
line, Maven, Jenkins

➔ advanced
 Millions of virtual users
 1000+ distributed load injectors
 miscellaneous facilities

➔ mature
 more than 12 years feedback

http://clif.ow2.org

➔ CLIF plug-in for Jenkins
 performance testing in

continuous integration
 web interface for running CLIF

tests
 automatic performance reports

and performance trends

http://clif.ow2.org/

 618th November 2015

The Orange Forge platforms

Jenkins + load injector 1

load injector 2

load injector 3

Jenkins + thin load injection
prod

rec

newprod

FirewallCurrent production

Quality Assurance for
current production

Future production

for benchmarking campaign

for Quality of Experience monitoring

 718th November 2015

Benchmarking Orange Forge
➔ Best practices

 analyze logs from the
production platform to
define a realistic traffic
for each forge service

 run the benchmark on
both the new platform
and an exact copy of
the production platform

 change only one
element at a time to
help troubleshooting

➔ Reality
 protocols are too

complex, logs are too
low-level, usage is too
variable

 no exact copy of the
production platform is
available (Q-A "rec" has
less resources)

 all brand new hardware
and software (OS and
software stack)

 818th November 2015

A pragmatic approach

➔ Choose a number of services and define user-
scenarios related to these services
 SVN checkout/commit, GIT push/fetch, web portal, agile

tools, SVN Tree, GIT tree, tracker, forum
 Luckily, APIs don't change with the new Tuleap version!

➔ Create datasets
 projects, user, repositories and database contents

➔ For each service, compare performance of current
production with the new platform
 taking network throughput as a traffic reference

 918th November 2015

Taking advantage on CLIF features

➔ Used provided HTTP injector for all web-based tools
➔ Developed SVNInjector and GitInjector plug-ins

 using the CLIF console itself, based on an Eclipse environment including
Java SE tools and a dedicated wizard

 wrapping existing open source Java clients
 advantage: checked-out/pulled data are discarded, committed data are

generated (no need for keeping a sample set of files)

➔ Used probes for examining resources usage
 at the server side (web front-end, database) for tuning and measuring

network throughput
 at the load injection side for checking its health and network throughput

➔ Scenarios are used in different CLIF test plans
 one scenario alone or combined with the others
 with different numbers of virtual users and load injectors

 1018th November 2015

Step #1: getting a reference
benchmark from current production

Performance testing of the Orange Forge production platform

prod

prod

Orange Forge users

Real traffic

web-based tools

SVN

GIT

Unit traffic:
- one service at a time

- single session (1 virtual user)

Results: response times
statistics for each service

 1118th November 2015

Step #2: comparing prod with
newprod (unit traffic only)

Performance testing of Orange Forge new production with no
background workload

newprod

newprod
empty

Unit traffic:
- one service at a time

- single session (1 virtual user)

prod

compare with prod:
newprod should be always faster

 1218th November 2015

Step #3: compare with newprod
under heavy traffic

Performance testing of Orange Forge new production with
background workload

newprod

newprod
loaded

Unit traffic Heavy traffic:
- 3 load injectors
- mix of all services
- multiple sessions (100 active virtual users)
- network bandwidth close to that of real
traffic (200-300 Mbit/s)

compare with prod:
should be globally faster

prod

web-based tools

SVN

GIT

 1318th November 2015

Jenkins+CLIF plug-in:
Performance trend report

 1418th November 2015

Step #4: tuning newprod

Load testing of Orange Forge new production with probes

newprod(c, r)
- c CPU
- r RAM

newprod
(c,r)

Unit traffic
Heavy traffic

compare
with other newprod(ci,rj) newprod

(ci,rj)

probes :
- CPU
- RAM
- network bandwidth

probes :
- CLIF's memory
(JVM heap)
- network bandwidth

web-based tools

SVN

GIT

 1518th November 2015

Found and fixed

➔ Steps #2 and #3 revealed lower performance
 most problems related to caches

● mainly the PHP cache not working
● Tuleap's built-in administration tools helped troubleshooting

 issues with load injection limited to 100 Mbit/s because
of one network equipment

 Linux kernels, NFS vs local disk, in-memory tmp... a lot
of "details"!

➔ Step #4 revealed that it was better to add CPU but
memory was oversized (reaffected to tmp)

 1618th November 2015

Tuning: +30% overall speed-up
A

G
IL

E
 B

A
C

K
LO

G

A
G

IL
E

 C
A

R
D

W
A

LL

A
G

IL
E

 D
A

S
H

B
O

A
R

D

A
G

IL
E

 R
O

A
D

M
A

P

F
O

R
U

M
 H

O
M

E

F
O

R
U

M
 T

H
R

E
A

D

G
IT

 f
et

ch
 S

P
3

G
IT

 f
et

ch
 S

P
5

G
IT

 c
lo

ne

G
IT

 p
us

h

H
O

M
E

 (
co

nn
ec

te
d)

H
O

M
E

 (
no

t
co

nn
ec

te
d)

LO
G

IN

LO
G

O
U

T

M
Y

 P
A

G
E

P
R

O
JE

C
T

H
O

M
E

S
V

N
 H

O
M

E

S
V

N
 T

R
E

E

S
V

N
 c

he
ck

ou
t

S
V

N
 c

he
ck

ou
t

S
P

3

S
V

N
 c

he
ck

ou
t

S
P

4

S
V

N
 c

om
m

it

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Relative speed-up

+12 vCPU, in-RAM /tmp and /var/tmp

mean

median

 1718th November 2015

Step #5: monitor Orange Forge
quality of Experience

Periodic health check and quality of user experience

(new)prod

Orange Forge users

Real traffic

web-based tools

SVN

GIT

Periodic performance test
- scheduled and launched by Jenkins
- detailed reports and performance
trends generated by Jenkins
- notification of platform administrators

Unit traffic

Orange Forge
administrators

 1818th November 2015

Conclusion
➔ The complexity of benchmarking

 identifying and defining "realistic" scenarios and datasets
 beware of load injection defaults
 use complementary monitoring tools to troubleshoot

➔ The high efficiency of CLIF+Jenkins
 CLIF's versatility (multi-protocols, scenarios used in different

test plans, distributed load injection and monitoring)
 click-to-test with automatic reporting allow for testing lots of

configurations within short cycles
➔ It was definitely a good idea to benchmark...

 successful switch to the new platform 15th June
● we avoided big troubles!

 scenarios are now used for monitoring QoE

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

